Stochastic Calculus for a Time-changed Semimartingale and the Associated Stochastic Differential Equations
نویسنده
چکیده
It is shown that under a certain condition on a semimartingale and a time-change, any stochastic integral driven by the time-changed semimartingale is a time-changed stochastic integral driven by the original semimartingale. As a direct consequence, a specialized form of the Itô formula is derived. When a standard Brownian motion is the original semimartingale, classical Itô stochastic differential equations driven by the Brownian motion with drift extend to a larger class of stochastic differential equations involving a time-change with continuous paths. A form of the general solution of linear equations in this new class is established, followed by consideration of some examples analogous to the classical equations. Through these examples, each coefficient of the stochastic differential equations in the new class is given meaning. The new feature is the coexistence of a usual drift term along with a term related to the time-change.
منابع مشابه
Computational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملApplication of DJ method to Ito stochastic differential equations
This paper develops iterative method described by [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve Ito stochastic differential equations. The convergence of the method for Ito stochastic differential equations is assessed. To verify efficiency of method, some examples are ex...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کامل